- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Gholampour, Amin (1)
-
Jiang, Yunfeng (1)
-
Kool, Martijn (1)
-
van_Bree, Dirk (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract For a smooth projective surface$$X$$satisfying$$H_1(X,\mathbb{Z}) = 0$$and$$w \in H^2(X,\mu _r)$$, we study deformation invariants of the pair$$(X,w)$$. Choosing a Brauer–Severi variety$$Y$$(or, equivalently, Azumaya algebra$$\mathcal{A}$$) over$$X$$with Stiefel–Whitney class$$w$$, the invariants are defined as virtual intersection numbers on suitable moduli spaces of stable twisted sheaves on$$Y$$constructed by Yoshioka (or, equivalently, moduli spaces of$$\mathcal{A}$$-modules of Hoffmann–Stuhler). We show that the invariants do not depend on the choice of$$Y$$. Using a result of de Jong, we observe that they are deformation invariants of the pair$$(X,w)$$. For surfaces with$$h^{2,0}(X) \gt 0$$, we show that the invariants can often be expressed as virtual intersection numbers on Gieseker–Maruyama–Simpson moduli spaces of stable sheaves on$$X$$. This can be seen as a$${\rm PGL}_r$$–$${\rm SL}_r$$correspondence. As an application, we express$${\rm SU}(r) / \mu _r$$Vafa–Witten invariants of$$X$$in terms of$${\rm SU}(r)$$Vafa–Witten invariants of$$X$$. We also show how formulae from Donaldson theory can be used to obtain upper bounds for the minimal second Chern class of Azumaya algebras on$$X$$with given division algebra at the generic point.more » « less
An official website of the United States government
